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tie VRH approximation, cven for the anisotropic
crvstals like CdTe and ZnSe.

“lo examine a possible’ dependence of the VRH
approximation on clastic anisotropy, we plotted the
ratio of the measured modulus to the calculated VRH
modulus as a function of percent elastic anisotropy in
Iigs. 1 and 2. The percent elastic anisotropy! referred
hereis”

A*(in %) =[3(A4—1)2/3(A—1)24254]X 100, (5)

where o0 =2en/ (eu—rcr2) . Note that the limiting Voigt
and Reuss moduli result in the wider spread as the
clastic anisotropy of crystal becomes large. It is note-

+ . . . .
worthy, however, that the measured moduli lie within

the spread for every crystals considered in the present
program. As scen in IYig. 2, the ratio of shear moduli
(Gueas'Gyrur) 1s smadler than unity in all cases and the
(deviation of this ratio from unity becomes large as the

_ clastic anisotropy of crystal increases. Similar observa-

tion can be made also for the case of Young’s modulus.

TasrLe V. Mcan velocity of sound for MgO, Cal%,
B-7nS, CdTe, and ZnSe.»

Materials and reference?

A* U U
(%) [Eq. (6)] [Eq. (7)]

stal (05C1)

Single-cr

MgO 2.28 6.617 6.654
polyerystalline e 6.620

Cal%y Single-crystal (60I11) 2.96 4,001 4,022
polyerystalline oo 4.006

3-ZnS  Single-crystal (63151) 8.49 3.122 3.135
polyerystalline oee 3.127

CdTe  Single-crystal (62M1) 8.83 1.712 1.743
: polyerystalline cee 1.727
ZnSc Single-crystal (631B1) 11.70 2.406 2.637
polycrystalline “ee 2.014

Al values of the velocity are in units of 105 em/sce.
b See Table 1I for the complete references.

The trend of this deviation with increasing clastic
anisotropy suggests that, for highly anisotropic crystals
like Li and RbI, the VRH approximation may not be
the good procedure to follow. But, for the cubic crystals
possessing low or moderate elastic anisotropics (i.c.,
A%<10%,), the VRH approximation is believed to be
accurate in giving the probable isotropic clastic moduli
and these VRH moduli are as good as ones we measure
in the laboratory.

To provide an additional support to this conclusion,
we take a numerical approach in which we calculate the
medn velocity of sound in a given crystal and then
compare this result with the corresponding quantitics
deduced from the Debye continuum relation. The
mean velocity of sound in an anisotropic crystal is

1 3

) 1\ dQ |-
by RRKE L 3
Py /| (v;") 4#} » (7=1,2,3), (6)

Um = 5
_.) J=l

where v; represent three sound velocities that are the
eigenvalues of the Christoffel equation involving the
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I16. 1. Comparison between calculated and mcasured Young’s
moduli as a function of clastic anisotropy.

single-crystal elastic constants and ¢Q is the clement of
a solid angle, i.c., dQ= sin0d0d$. Since the integration
of Eq. (6) is impractical to perform analytically, the
integration is cvaluated numerically as a procedure
outlined by Alers.?? Using the single-crystal clastic con-
stants for the individual materials considered, values
of the mean velocity of sound have been caleulated by
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I'16. 2. Comparison between calculated and measured shear
moduli as a function of clastic anisotropy.

12 G. A. Alers, Physical Acoustics, W. P. Mason, Ed. (Academic
Press Inc., New York, 1965), Vol. IT[-B, Chap. 1.




